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1. Introduction

A principled approach to prediction tasks is to choose a statistical model that explains the
data. The choice of the model class is crucial and has to observe the bias–variance trade-off,
which motivates the need for principled approaches to selecting the best model class from a
set of options. Whilst model selection can be done manually by trial and error, the process
tends to consume considerable time and resources and be prone to human biases. Bayesian
model selection (MacKay, 1992; Kuo and Mallick, 1998; Rasmussen and Ghahramani, 2001),
treats the model class as a random variable and computes its posterior distribution. It
offers a built-in complexity regulariser, commonly known as Bayesian Occam’s razor, which
penalises models whose complexity is excessive or too modest. As a result, Bayesian model
selection assigns high posterior probability to model classes whose complexity is “just right”.

Gaussian processes (GPs) are a popular and widely used approach to single-output non-
linear regression (Williams and Rasmussen, 2006). They constitute a probabilistic modelling
framework that is tractable, modular, and interpretable. GPs can be extended to multiple
output and have in this setting successfully been applied to problems as diverse as analysis
of neuron activation patterns (Yu et al., 2009), image upscaling (Akhtar et al., 2016), and
solar panels’ output prediction (Dahl and Bonilla, 2018). One of the simplest and most
widely adopted approach to extend GPs to multiple outputs is to model each output as a
linear combination of a collection of shared, unobserved latent Gaussian processes (Wack-
ernagel et al., 1997), henceforth referred to as the Linear Mixing Model (LMM). A pressing
issue with this approach is choosing the complexity of the latent space, which constitutes
choosing the number of latent processes and their kernels. These choices are typically done
manually (Teh and Seeger, 2005; Osborne et al., 2008; Yu et al., 2009), which can be time
consuming and prone to overfitting.

In this work, we apply Bayesian model selection to the calibration of the complexity
of the latent space. We propose an extension of the LMM that automatically chooses the
latent processes by turning off those that do not meaningfully contribute to explaining the
data. We call the technique Gaussian Process Automatic Latent Process Selection (GP-
ALPS). The extra functionality of GP-ALPS comes at the cost of exact inference, so we
devise a variational inference (VI) scheme and demonstrate its suitability in a set of pre-
liminary experiments. We also assess the quality of the variational posterior by comparing
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our approximate results with those obtained via a Markov Chain Monte Carlo (MCMC)
approach.

2. Automatic Latent Process Selection (ALPS) for MOGPs

We adopt the following formulation of the Linear Mixing Model:

xj ∼ GP(0, kj(t, t
′)), f(t) = Hx(t), yi(t) ∼ N (fi(t), σ

2
i ). (1)

In the LMM, fi(t) =
∑m

j=1Hijxj(t) is a linear combination of unobserved processes (xj)
m
j=1,

where we call H the mixing matrix and x the latent processes. Our approach, named
Gaussian Process Automatic Latent Process Selection (GP-ALPS), aims to automatically
select those latent processes xj that meaningfully contribute to the observed signal. It
does so by multiplying every xj by a Bernoulli random variable bj , which gives the model
the ability to exclude xj from contributing to f : f(t) = H(x(t) ◦ b), where ◦ denotes the
Hadamard product. This approach can be interpreted as a form of drop-out regularisation
(Nalisnick et al., 2019) on the latent processes. GP-ALPS also includes a prior over H. In
summary, GP-ALPS is given by the following generative model:

xj ∼ GP(0, kj(t, t
′)), bj ∼ Bern(θj), Hij ∼ N (0, sij),

f(t) = H(x(t) ◦ b), yi(t) ∼ N (fi(t), σ
2
i ).

(2)

Each of the 2m possibilities for the vector b identifies a model class, so the prior effectively
describes an ensemble of 2m different models, corresponding to all possible combinations of
the latent functions. Another interpretation of GP-ALPS is that the latent processes are
various features on which the observed signal can depend, which makes GP-ALPS a method
to perform automatic feature selection.

3. Variational Inference Scheme

Let Y ∈ Rp×n denote observed data at input locations t ∈ Rn. Augment the model with
inducing variables Xz ∈ Rm×` at input locations tz ∈ R`, which are assumed to be sufficient
statistics for the latent processes (Titsias, 2009a; Hensman et al., 2013; Nguyen and Bonilla,
2014). To perform inference, we introduce a structured mean-field approximate posterior
distribution

q(X,Xz, H, b) = p(X|Xz)q(Xz)q(H)q(b)

where we choose q(Xz), q(H), and q(b) by minimising the Kullback–Leibler divergence with
respect to the true posterior, using stochastic gradient-based optimisation:

(q∗(Xz), q∗(H), q∗(b)) = argmin(q(Xz),q(H),q(b))DKL [q(X,Xz, H, b)‖p(X,Xz, H, b|Y )]

We let q(Xz) be a Gaussian that factorises over the latent processes and q(H) a fully
factorised Gaussian. The approximate posterior q(b), however, is troublesome, because b
is discrete, which means that we cannot just use the reparametrisation trick (Kingma and
Welling, 2013; Titsias and Lázaro-Gredilla, 2015; Rezende et al., 2014). We therefore let
q(b) be a continuous relaxation of the Bernoulli distribution called the concrete distribution
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Figure 1: Comparison between GP-ALPS and MCMC for the experiment in Section 4.1.

(Maddison et al., 2016). To compute the ELBO, we also approximate p(b) with the concrete
distribution, as the cross-entropy Eq(b) log p(b) would not be well-defined in the case in which
q(b) is continuous and p(b) is discrete (Maddison et al., 2016). For the temperature of the
concrete distributions, we use a particular annealing scheme. See Appendix B for a more
detailed description of the variational inference scheme.

To assess the quality of the variational approximate posterior, we compare it against
Gibbs sampling, which has theoretical guarantees to converge to the true posterior in the in-
finite time limit. The key insight is that f is bilinear in H, x, which means that p(X|Y,H, b)
and p(H|X,Y, b) are tractable (just Bayesian linear regression); and p(bj |X,Y,H, b¬j) is
tractable because b is discrete. See Appendix C for a more detailed description of the Gibbs
sampler.

4. Experimental Results

4.1. Square Wave Decomposition

We first test the model’s ability to select relevant latent processes using a simple example
from signal processing. We generate a single (p = 1) square wave of frequency fsq = 0.05
Hz, and aim to model it as a linear combination of m = 8 latent GPs with linear–periodic
kernels with fixed frequencies fi = ifsq for i ∈ 1, ...,m. As can be seen in Figure 1(b), GP-
ALPS assigns high Bernoulli activation probabilities to the latents whose frequencies are
odd multiples of fsq, which correspond to the peaks in the square wave’s power spectrum.
The signal is thus reconstructed quite accurately (Figure 1(a)) using the first 4 terms of
the Fourier series. Furthermore, both the activation probabilities and signal reconstruction
found by GP-ALPS are quite close to those obtained by sampling the exact posterior via
Gibbs sampling, which indicates that the variational posterior approximates the exact one
closely, despite the simplifying assumptions that have been made to enable variational
inference. Interestingly, the above is true with as few as ` = 10 learnable inducing points.

4.2. Noisy Mixture of Periodic Signals

In this experiment, we test the technique’s ability to perform model selection in the presence
of noise, as well as choose between equally good solutions. To generate the data, we start
with m∗ = 3 signals with periods 7, 17 and 23 (Figure 2(a)), then corrupt them with

additive Gaussian noise and combine linearly with a fixed matrix H∗ =
[
I3 Z

]T
(where

3



GP-ALPS: Automatic Latent Process Selection for MOGPs

Z ∈ R6×6), to obtain p = 9 outputs (blue in Figure 2(b)). We model the data with GP-
ALPS with m = p = 9 linear-periodic latents, with periodicities 3, 7, 7, 11, 13, 17, 19, 23
and 23 (note the duplicates), and ` = 100 learnable inducing points.
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Figure 2: Data generated for the experiment in Section 4.2. (a) Original, noiseless latent
signals; (b) outputs (blue) and predictions (green). Vertical line separates training and
testing sets.

The predictive densities are shown in green in Figure 2(b), and the trained variational
posteriors q(H) and q(b) are shown in Figures 3(a), 3(b), and 3(c). GP-ALPS successfully
identifies the frequencies that generated the data. Despite the noise making it virtually
impossible to identify the periodicity T = 7 visually in the data (Output 1 in Figure 2(b)),
the model manages to identify its presence with high degree of certainty. Furthermore, the
solution found by GP-ALPS is parsimonious—only one latent is activated for each T = 7
and T = 23. While, intuitively, one may expect both latents with T = 7 (or with T = 23)
to split the activation probability of those frequencies, this is a “more complex” explanation
(either can be on or off) than activating only one (only one can be on or off). By Bayesian
Occam’s Razor, we expect that posterior inference tends towards the simpler explanation.
Inspecting the element-wise posterior means and variances in H (Figure 2(a)), we note
that elements in activated columns are estimated with low-variance Gaussians, as expected,
whereas the inactive columns just revert to the standard normal prior.

4.3. Variable Selection in Boston Housing Dataset

Further to the experiments with synthetic data described above, we have employed GP-
ALPS to perform variable selection for kernelised ridge regression (KRR), using the Boston
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Figure 3: Approximate posteriors from the experiment in Section 4.2.
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Figure 4: (a) Feature activation probabilities found by GP-ALPS. (b) Comparison between
GP-ALPS and all possible 213 kernelised ridge regression (KRR) models on test-set RMSE.

housing dataset1 as a motivating example. Posterior activation probabilities are shown in
Figure 4(a). Comparing the test-set results with all 213 = 8192 possible linear regression
models, we demonstrate that our method performs competitively, ranking within the 0.05%
best models, as shown in Figure 4(b). This performance is comparable to the one achieved
by KRR using only the features selected by GP-ALPS and superior to the one obtained
by carrying regular GP regression with all features, as well as that obtained using Lasso
regression. More details can be found in Appendix A.

1. https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_boston.html#
sklearn.datasets.load_boston
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Appendix A. Feature Selection in Boston Housing Dataset

We use GP-ALPS to perform feature selection for kernelised linear regression. Our illustra-
tive example is the Boston housing dataset, as provided in sklearn (Pedregosa et al., 2011),
which contains information about properties in 506 neighbourhoods in Boston, including
median value, average number of rooms, average age and some others. The regression task
is to predict the median value of a property based on 13 other neighbourhood features.

We model the data using GP-ALPS, whereby each of the m = 13 latent processes
corresponds to one of the input variables and the latent kernels are radial basis functions
(RBF) with unit lengthscale, which is equivalent to kernelised linear regression. The number
of inducing points used is ` = 100, and their locations are learnt. GP-ALPS selects 4 out
of 13 latent processes (activation probabilities shown in Figure 4(a)) that correspond to
variables CHAS (proximity to Charles river), RM (average number of rooms), PTRATIO
(average pupil-teacher ratio in local schools) and LSTAT (proportion of population of lower
socioeconomic status). Since the size of this data set is comparatively small, it is possible
to compare the predictive performance of the model selected by GP-ALPS with that of all
the other 213 = 8192 possible models. Figure 4(b) shows the resulting histogram of test-
set root-mean-squared-errors (RMSE) produced by the 8192 kernelised linear regression
models. The variable set found by GP-ALPS corresponds to the top-performing 0.05%
of the model space. To provide a basis for comparison, we also perform kernelised ridge
regression with all 13 variables, GP regression with the kernel comprising a weighted sum
of unit-lengthscale RBFs, as well as Lasso regression.
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Appendix B. Variational Inference Scheme

As explained in Section 2, the generative model in GP-ALPS explains the observed signal
y(t) ∈ Rp as a linear-Gaussian transformation of m latent Gaussian processes x(t) ∈ Rm,
multiplied by a vector of Bernoulli variables b. Mathematically, this can be written down
as follows:

xj ∼ GP(0, kj(t, t
′)), bj ∼ Bern(θj), Hij ∼ N(0, sij),

f(t) = H(x(t) ◦ b), yi(t) ∼ N (fi(t), σ
2
i ),

where ◦ refers to Hadamard product. Our goal is to compute the posterior over the latent
variables, p(X,H, b|Y ), but this density is unfortunately intractable, so we resort to varia-
tional inference, aiming to find some distribution q(X,H, b) that closely approximates the
exact posterior p(X,H, b|Y ).

B.1. Analytical formulation

We start by augmenting the latent processes with inducing variables Xz ∈ Rm×` at induc-
ing locations tz ∈ R` (Titsias, 2009a; Hensman et al., 2013; Nguyen and Bonilla, 2014).
This construction provides both a meaningful way of summarising the data as part of the
posterior on x and an efficient way of scaling to large datasets. With this addition, the
evidence lower bound (ELBO) becomes:

L = Eq
[

log
p(Y,X,Xz, H, b)

q(X,Xz, H, b)

]
,

which we optimise numerically as in Kingma and Welling (2013). To make this optimisa-
tion tractable, we make three important assumptions. We make a structured mean-field
assumption, q(X,Xz, H, b) = q(X,Xz)q(H)q(b). We take q(X,Xz) = p(X | Xz)q(Xz), as
in Titsias (2009b). For q(Xz) and q(H), we choose fully factorised Gaussians:

q(Xz) =

m∏
j=1

N (Xz
j·;m

z
j , S

z
j ), q(H) =

p∏
i=1

m∏
j=1

N (hij ;m
H
ij , s

H
ij ),

where mz ∈ Rm×`, Sz ∈ Rm×`×`, mH ∈ Rp×m, SH ∈ Rp×m. Since the Bernoulli distribution
does not have a differentiable reparametrisation, we use a continuous relaxation of the
Bernoulli distribution for q(b):

q(b) =

m∏
j=1

Concrete(bj ; ρj),

where Concrete is the concrete distribution (Maddison et al., 2016). Here ρ ∈ [0, 1]m. The
ELBO can then be re-written as:

L = Eq
(
log p(Y |X,H, b)

)︸ ︷︷ ︸
def
= Lell

−DKL [q(Xz)‖p(Xz)]︸ ︷︷ ︸
def
= Lzkl

−DKL [q(H)‖p(H)]︸ ︷︷ ︸
def
= LHkl

−DKL [q(b)‖p(b)]︸ ︷︷ ︸
def
= Lbkl

Let us consider each of the terms above in turn.
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B.2. Expected log-likelihood (Lell)

Start from the full expression for the expected log-likelihood:

Lell = Ep(X|Xz)q(Xz)q(H)q(b)

[
log p(Y |X,H, b)

]
.

Since the conditional likelihood inside the expectation does not depend on Xz, we first
marginalise it out, similarly to Dezfouli and Bonilla (2015):

q(X) =

∫
dXzp(X|Xz)q(Xz) =

m∏
j=1

N (Xj ;Ajm
z
j , K̃j +AjSjA

T
j )︸ ︷︷ ︸

q(Xj)

where Aj = Kj
cz(K

j
zz)−1 and K̃j = Kj

cc−AjKj
zc, such that Kj

cc, K
j
cz and Kj

zc are Gram ma-
trices constucted using latent kernel kj(·, ·) on input vectors t and tz. Adapting Theorem 1
from Dezfouli and Bonilla (2015) to our parametrisation of q(Xz), we then write the ELL
as:

Lell = Eq(H)q(b)

[ n∑
t=1

Eq(xt)
[

log p(yt|xt, H, b)
]]
,

where q(xt) = N (xt; dt, S
x
t ) such that (dt)j = (Ajm

z
j )t and (Sxt )jj = K̃j

tt + (Aj)
T
t S

z
j (Aj)t.

The final expression for ELL we use is then:

Lell =
n∑
t=1

Eq(H)q(b)q(xt)

[
log p(yt|xt, H, b)

]
︸ ︷︷ ︸

def
= L(t)ell

,

whose gradients we compute using the reparametrisation trick (Kingma and Welling, 2013;
Rezende et al., 2014; Titsias and Lázaro-Gredilla, 2015) on variational posteriors q(xt),
q(H) and q(b).

B.3. KL-divergence in activation variables (Lbkl)

To compute

Lbkl = −Eq(b)
[

log
q(b)

p(b)

]
,

we also approximate p(b) with the concrete distribution. Again, we use the reparametrisa-
tion trick to compute gradients.

10
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B.4. KL-divergence in inducing variables (Lzkl)

Both q(Xz) and p(Xz) are block-diagonal multivariate Gaussians, so the KL-term has a
closed analytical form:

Lzkl = −DKL [q(Xz)‖p(Xz)] = −
m∑
j=1

DKL

[
q(Xz

j )
∥∥p(Xz

j )
]

= −
m∑
j=1

DKL

[
N (Xz

j ;mz
j , S

z
j )
∥∥N (Xz

j ; 0,Kj)
]

= −1

2

m∑
j=1

[
Tr
[
(Kj)−1Szj

]
+ (mz

j )
T (Kj)−1mz

j − `+ log
|Kj |
|Szj |

]
,

so gradients can be computed analytically or by automatic differentiation.

B.5. KL-divergence in mixing matrix (LHkl)

Both q(H) and p(H) are also diagonal multivariate Gaussians, so the KL-term is simply

LHkl = −DKL [q(H)‖p(H)] = −
p∑
i=1

m∑
j=1

DKL [q(Hij)‖p(Hij)]

= −
p∑
i=1

m∑
j=1

DKL

[
N (Hij ;m

H
ij , s

H
ij )
∥∥N (Hij ; 0, sij)

]
= −

p∑
i=1

m∑
j=1

[1

2
log

sij

sHij
+
sHij + (mH

ij )2

2sij
− 1

2

]
,

which, again, can be differentiated analytically or using automatic differentiation.

B.6. Summary of the optimisation problem

All in all, the variational objective we aim to maximise is:

L = Lell + Lbkl + Lzkl + LHkl .

Observing that Lell is a sum over data points, and that other terms do not depend on
observations Y , the ELBO will also be a sum over data points:

L =

n∑
t=1

L(t) =

n∑
t=1

[
L(t)ell +

1

n

(
Lbkl + Lzkl + LHkl

)]
,

thus, the objective is amenable to stochastic gradient-based optimisation, which is helpful
for scaling the model to large datasets.
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B.7. Temperature of the concrete distributions

For the temperature of the concrete distributions in q(b), we use the following annealing
scheme:

T (n,N) = 0.66 + (10.0− 0.66) exp

(
−(n− 0.75N)2

0.0832N2

)
where n is the current iteration and N is the total number of iterations. This annealing
scheme is visualised in Figure 5. The idea behind the temperature starting low is that the
rest of the parameters can be optimised before latent processes start being dropped out. As
for the temperature parameter in the continuous relaxation of p(b), it is chosen to be 1/2,
as in Maddison et al. (2016).
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Figure 5: Visualisation of the annealing scheme for the temperature of the concrete distri-
butions
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Appendix C. Markov Chain Monte Carlo

This appendix summarises the derivations of the conditionals needed to perform Gibbs
sampling from the intractable exact posterior of GP-ALPS. As stated in Section 3, the
following three conditionals are of interest:

p(X|Y,H, b), p(H|X,Y, b), and p(bj |X,Y,H, b¬j).

Let us consider each of them in turn.

C.1. p(X|Y,H, b)

Start by writing down the Bayes’ theorem:

p(X|Y,H, b) ∝ p(Y |X,H, b) p(X) = N (y;Hbx, Sb) N (x; 0,K),

where y = vec(Y ), x = vec(X), Hb =
(
H diag(b)

)
⊗ In, Sb = diag(σ2) ⊗ In and K is

the block-diagonal multi-output kernel matrix. Note that the above is a Bayesian linear
regression problem with a Gaussian prior, so the posterior form is well-known (Bishop, 2006,
p. 93):

p(x|y,Hb) = N (x;SxH
T
b S
−1
b y, Sx),

where Sx =
[
K−1 +HT

b S
−1
b Hb

]−1
.

C.2. p(H|X,Y, b)

As before, writing down the Bayes’ theorem:

p(H|Y,X, b) ∝ p(Y |H,X, b) p(H) =
[ p∏
i=1

p(yi|X,hi, b)
][ p∏

i=1

p(hi)
]

=

p∏
i=1

[
p(hi)p(yi|X,hi, b)

]
=

p∏
i=1

[
N (hi; 0, sij) N (yi;X

T diag(b) hi, σ
2
i In)

]
,

where hi ∈ Rm is ith row of H, and yi ∈ Rn is the ith output. The above amounts to p
independent Bayesian linear regression problems, so, as before, the posterior form is well-
known (Bishop, 2006, p. 93):

p(hi|yi, b,X) = N (hi;Sh diag(b) Xyi/σ
2
i , Sh),

where Sh =
[
1
sIm + 1

σ2
i

diag(b) XXTdiag(b)
]−1

.

13
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C.3. p(bj |X,Y,H, b¬j)

Writing down the Bayes theorem for each bj :

p(bj |Y,X,H, b¬j) ∝ p(Y |X,H, b) p(bj) = p(bj)
[ p∏
i=1

n∏
t=1

p(yti|b, xt, hi)
]

∝ exp
[
bj log

θj
1− θj

] p∏
i=1

n∏
t=1

exp
[
−

(yti −
∑m

k=1 hikbkxtk)
2

2σ2i

]
= exp

[
bj log

θj
1− θj

] p∏
i=1

n∏
t=1

exp
[
− 1

2σ2i

(
y2ti − 2yti

m∑
k=1

hikbkxtk + (
m∑
k=1

hikbkxtk)
2
)]

= exp
[
bj log

θj
1− θj

] p∏
i=1

n∏
t=1

exp
[
− 1

2σ2i

(
y2ti − 2yti

∑
k 6=j

hikbkxtk − 2ytihijbjxtj

+ (
∑
k 6=j

hikbkxtk)
2 + 2hijbjxtj + (hijbjxtj)

2
]

∝ exp
[
bj log

θj
1− θj

]
exp
[
− bj

2

p∑
i=1

1

σ2i

(
2hij

n∑
t=1

∑
k 6=j

hikbkxtjxtk

+ h2ij

n∑
t=1

x2tj − 2hij

n∑
t=1

xtjyti
)]

= exp
[
bj
(

log
θj

1− θj
+ cj

)]
= Bern

[
bj ;

θje
cj

ecj + θj

]
,

where

cj = −1

2

p∑
i=1

1

σ2i

(
2hij

n∑
t=1

∑
k 6=j

hikbkxtjxtk + h2ij

n∑
t=1

x2tj − 2hij

n∑
t=1

xtjyti
)
.
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